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Abstract. Despite the ubiquitous adoption of cloud computing and a very rich
set of services offered by cloud providers, current systems lack efficient and flex-
ible mechanisms to collaborate among multiple cloud sites. In order to guarantee
resource availability during peaks in demand and to fulfill service level objec-
tives, cloud service providers cap resource allocations and as a consequence, face
severe underutilization during non-peak periods. In addition, application owners
are forced to make independent contracts to deploy their application at differ-
ent sites. To illustrate how these shortcomings can be overcome, we present a
lightweight cross-site offloader for OpenStack. Our controller utilizes templates
and site weights to enable offloading of virtual machines between geographically
disperse sites. We present and implement a proposed architecture and demon-
strate its feasibility in both a typical cross-site offloading, as well as a failover
scenario.

1 Introduction and Background

Cloud computing has become a dominant computing model enabling cost-effective and
flexible access to a wide pool of resources, and many classes of applications, such as
web services, big data analytics, distributed applications for social networking, stor-
age and many other applications, have been smoothly integrated into cloud services.
However, to accommodate application demands and minimize the risk of losing the
constantly increasing flow of customers, Cloud Service Providers, CSPs, have been
relying on the continuous expansion of their IT facilities while employing simplistic
policies to manage resources [15]. Numerous studies have shown that CSPs overpro-
vision their datacenter and fail to utilize the available resources efficiently, with their
utilization ranging from 10% to 50% [19, 3, 6, 16, 7]. This means that, in order to guar-
antee availability during short time frames of peak demands and adhere to SLAs, CSPs
overprovision resources resulting in underutilization of resources during non-peak pe-
riods [19].

Despite cloud computing’s ability to provide flexibility and elasticity in resource
provisioning, this so far holds true only within a single data center or administrative
zone (site). The standard approach is to horizontal scale where additional Virtual Ma-
chines (VMs) are allocated to satisfy increased demands and is limited to a single ad-
ministrative site. A better approach to utilize the cloud efficiently and flexibly, is that
different cloud sites collaborate and interact in an autonomic fashion based on changes
in the infrastructure or customers requirements. This collaborative approach can lead to



improved resource utilization, i.e. sites can offload applications to another site during
peak periods instead of keeping its own resources for such events, and service local-
ity. The locality aspect means that applications can be placed or moved with regards
to the locality of its traffic, or based on quality/latency requirements such as regula-
tory constraints, cost optimization, service continuity and geo-redundancy. Moreover,
application owners might prefer to deploy their applications at different sites to serve
geographically diverse end-users as well as for fault tolerance reason.

Collaboration or federation [4, 23, 17] between cloud sites can be beneficial both
to the cloud provider and the service owners. For cloud providers, it offers opportu-
nities to reduce total cost of ownership (TCO) through effective resource utilization
and provide better maintenance. CSPs can efficiently utilize their resources and reduce
resource overprovisioning for temporary peaks by offloading some of the workloads
to collaborating sites during such events. However, realizing multi-cloud collaboration
can be very challenging as it typically requires changes to the core part of the cloud
infrastructure management system in each site, and in order to make decisions the state
of each site should be known in advance. For service owners, it offers the opportunity
to deploy their service in different clouds which can help them service locality and fail-
over mechanisms. For example, failure of one or more cloud sites may not affect their
service as new instances can be automatically spawned in a different cloud site.

In this contribution, we design and implement a proof of concept solution for ca-
pacity offloading and fail-over mechanisms across multiple sites. The multi-cloud con-
troller has two main components: 1) An overload controller, including an overload
agent, that detects overload across nodes within a site, mitigates overloaded nodes by
load-balancing the load across nodes within the site and delegates to the second com-
ponent if it cannot handle the load on the local cloud and 2) A HeatSpreader which
performs offloading of VMs from the overloaded cloud to cloud sites with less load,
detects cloud site failure and spawns new instances of inaccessible VMs in different
cloud sites. Our solution works in conjunction with OpenStack [12] and OpenStack
Heat [11], transparent to the management system where a single configuration is made
to manage offloading of services across multiple sites. To realize efficient and flexi-
ble resource management locally and between geographically distributed sites, the pro-
posed solution monitors the data center’s resource utilization and application footprints
in a non-intrusive fashion through OpenStack Heat and decides which application to
offload to another site during peak periods and spawns new instances in a different site
during site outage. The concept is then evaluated in two typical usage scenarios.

2 Background and Motivation

As described in the previous section, collaboration between multiple cloud sites helps
to utilize the existing distribution of a cloud configuration to further balance loads be-
tween collaborating geographically distributed cloud sites. Using this model, CSPs can
resort to much more cost efficient capacity planning, utilizing support from collaborat-
ing cloud sites to accommodate the demands during peak periods. Such collaborations
could therefore be used both between separate public cloud vendors, and between an
enterprise private cloud and their public cloud partners. Application owners can also



use such configurations to dynamically adjust the number of VMs at each site based on
end-users demand.

Moreover, cloud maintenance is currently one of the major challenges for CSPs.
Supporting mass migration, for example, is currently a complex task that usually re-
quires manual intervention. It also relies on having spare equipment for migrating work-
loads away from the system targeted for maintenance. Upgrading between different
versions, for example in OpenStack, may require that the whole platform is brought
down, the components upgraded and the cloud brought back online again. To allow for
continuation of services, this usually requires instances be offloaded to a standby sys-
tem, while the upgrade is carried out. While upgrading a single machine is manageable,
upgrading multiple machines becomes more complex and resource demanding. Collab-
oration between multiple sites can ease the challenge of reserving extra resources for
maintenance purpose.

From the service owner perspective, having multi-cloud support what is often attrac-
tive in order to spread services across multiple clouds to increase fault-tolerance and de-
ploy services closer to end-users. By using only a single region or cloud provider, fault
tolerance is limited by the availability of that provider. Besides, end-users will experi-
ence varying performance depending on their location with respect to the region where
the service is deployed. Having a multi-cloud deployment allows for more graceful re-
covery of the loss of a region or entire provider as well as providing relatively better
performance to end-users. Another use-case for offloading is vertical scaling. When us-
ing disaggregated hardware systems [24], VMs can be larger than the size of a physical
node, in which case they need to run on a fat node [8]. If space is limited, smaller VMs
can then be offloaded to non-disaggregated nodes to allow the large VM to grow.

However, despite these benefits, cross-site offloading and failover is still not widely
used. One reason might be that it often requires installation and maintenance of complex
software stacks, that must be compatible between sites. We argue that there is a case for
a simpler solution.

3 Proposed architecture

In order for CSPs to collaborate transparently, they need to run compatible software
stacks or define communication protocols. OpenStack, is a widely used cloud operat-
ing system, that controls large pools of compute, storage, and networking resources
throughout a datacenter, all managed and provisioned through APIs with common au-
thentication mechanisms. In addition to Infrastructure-as-a-service functionality, Open-
Stack also provides fault- and service management, and orchestration [11]. Our solution
is designed to be used in conjunction with OpenStack, without requiring any modifica-
tions to OpenStack components.

It is important to continuously observe the state of the infrastructure and proactively
make decisions at runtime in order to provide performance guarantees in an environ-
ment where frequent and unpredictable changes are the norm. Our proposed Multicloud
controller is a system that continuously monitors the state of the system and tries to re-
duce performance degradation and prevent loss of virtual resources due to overloaded
compute nodes or cloud outages through collaboration with multiple cloud sites. It is
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Fig. 1. Heat workflow

composed of three different components, the HeatSpreader, the overload controller and
the overload agent. All components are implemented in Python and the source is avail-
able on GitLab on request.

The HeatSpreader component keeps track of and manages OpenStack Heat (see in-
ternal workflow in Fig. 1) stacks in multiple clouds. Specifically, it does this by contin-
uously monitoring and driving the amount of virtual resources in each cloud towards its
internal desired state. The HeatSpreader itself does not update its desired state, rather it
exposes an API which external components can utilize. However, in the case of a cloud
outage the HeatSpreader performs fail over on any lost virtual resources to configured
clouds which are still available.

The overload controller and the overload agent works in conjunction. The overload
agent sits on each compute node and monitors the load. Once the load on a a host
exceeds a specified threshold the agents notifies the overload controller, which runs ex-
ternal to the stack with one instance per site. The overload controller then tries to rectify
the situation by subsequently spreading the load between nodes in the same site. In case
of an event when the entire cloud site is overloaded, the overload controller updates the
the desired state in the HeatSpreader. The HeatSpreader then takes the responsibility
of reducing the number of virtual resources in the overloaded site, and increasing them
in the less overloaded cloud site(s). Fig. 2 shows an overview of how the multicloud
controller interacts with multiple sites. The overload controller and the overload agent
communicate via a messaging system, RabbitMQ [21], while the overload controller
and the HeatSpreader communicate via a REST [10] interface.

3.1 The HeatSpreader

The HeatSpreader, which is the core component of our multicloud controller, is im-
plemented as a standalone service. It is connected to multiple OpenStack deployment
sites simultaneously and scales the number of VMs in each site through the OpenStack



Fig. 2. MultiCloud controller overview

Heat API. The user configures it with the OpenStack Heat credentials for each site it
should control. The HeatSpreader is configured using its REST API endpoint which it
uses to reconfigure the site scaling weights. Whenever the HeatSpreader service sees a
change in the site weights, it will scale-up or scale-down the number of VMs in each
Heat stack. If the HeatSpreader service is unable to operate on a specific cloud site, for
example in the case of a site outage, the weight will be re-distributed on the other avail-
able sites. The HeatSpreader itself exposes an interface which can be used within a site
to offload less prioritized VM instances to a different site when it no longer finds a local
solution. This interface is used by the overload controller when the controller detects
site overload. In this way, the overload controller manages the cloud within a single
site while the HeatSpreader is responsible for redistributing load across multiple cloud
sites. A high level description of the algorithm is shown in Algorithm 1, and reasons for
adjusting the cross-site balance include:

– Site imbalance: Some production compute nodes are heavily utilized, while others
are not (e.g., the difference between the node with the heaviest workload compared
to the node with the lightest workload exceeds a threshold).

– Site overload: Site resources are over-utilized resulting in application demand not
being met. To circumvent such situations some VMs are offloaded to different sister
sites.

– Notification from remote sites: One or more of the sibling remote sites report over-
utilization.

Note that in order to be a candidate for offloading, the application must be stateless
as it is too expensive to undertake state migration across geographically distributed
sites. This approach can still be beneficial to stateful applications though, as stateless
applications can be offloaded to allow the stateful ones to scale.



Algorithm 1 High level description for Multicloud-Controller Algorithm
1: repeat
2: cloudList= getCollaboratingClouds()
for each: c ∈ cloudList
3: alerts = c.getAlert()
4: if c.hasFailed()=True then
5: SELECT candidate cloud sites
6: OFFLOAD VMs in c to the candidate cloud sites
7: end if
8: if c.isOverLoaded()=True then
9: SELECT candidate applications to offload in cloud c

10: SELECT candidate cloud sites
11: OFFLOAD candidate application to candidate cloud sites
12: end if
13:

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate the feasibility of our design, we performed two experiments, testing both the
cross-site offloading/overload mitigation, and the failover scenario. The experimental
setup consists of two cloud sites, running our OpenStack and our overload controller
and the HeatSpreader running external to both clouds. Cloud site 1 is composed of three
PMs (Nodes A, B and C) and cloud site 2 of 1 PM.

Overload Mitigation Our evaluation demonstrates how our solution performs load-
balancing within a single site and offloading during overload situations. The multicloud
controller which is composed of the overload controller and the HeatSpreader, manages
the cloud within a single site and across multiple sites. The overload controller performs
load-balancing within a single site and delegates responsibility to the HeatSpreader
when policies cannot be met withing a site.

Fail-over In this scenario, the ability of the HeatSpreader to detect a failure in one of
the cloud sites is tested. To emulate an outage, the Heat API service is stopped on cloud
site 1. When the Heat service on one of the clouds is unreachable, the HeatSpreader will
assume it is down, and automatically adjusts the site weights to bring up VMs on the
offload site to cover for those that are no longer reachable. The experimental hardware
setup is the same as in the overload scenario, and to simulate an outage, the Heat API
service is killed at cloud site 1. In order not to completely overload the small offload
site, the number of instances was decreased from the overload test.

4.2 Results and Discussion

This section presents experimental results for the detection and mitigation of infrastruc-
ture overload as the fail-over scenario under multi-cloud environments.



Fig. 3. Load average on the sites, overload scenario

Overload Mitigation The evaluation in this section shows how the controller mitigates
overload locally and offloads candidate VMs to a different site when local decision
cannot meet policy requirements. In Fig. 3, the load average [13] is plotted for all of the
nodes in the cluster. The HeatSpreader is configured with an objective to maintain the
overall utilization around 80% which is equivalent to a load average of approximately
26 for cloud-site 1.

From the figure, we can observe a load surge from minutes 8 to around 18 on Node-
A. Following the load surge, our overload controller tries to perform load-balancing
within cloud-site 1 by migrating VMs from Node A to Nodes B and C (reflected be-
tween minutes 18 to around 48). This is manifested by the load increase on Nodes B
and C and load decrease from Node A during the interval.

The load average of cloud site 1 is still above the threshold so the HeatSpreader
starts offloading to cloud site 2, at around T=40 to T=80. As cloud site 2 is much smaller
and less powerful than cloud site 1, it reaches maximum capacity at around T=70 which
means that the overall load average for cloud site 1 is still quite high, however it is now
stabilized under the threshold. Using a offload site of similar size would as the main site
would be more feasible, but the experiment indicates that the mechanism works.

Fail-over Fig. 4 shows the results of the fail-over test. As in the overload scenario,
the load average for the nodes are plotted against time. Around T=140, the Heat API
service was killed on cloud site 1, causing the measured load average of those nodes
drop to zero. When the HeatSpreader’s health check mechanism detects that cloud site
1 is unreachable, and flags it as down. It then starts failing over all instances from cloud
site 1 to cloud site 2 by adjusting the site weights. This causes the load on cloud site 2
to increase sharply as seen from T=200.



Fig. 4. Load average on the sites, failover scenario

5 Related Work

Cloud federation has been discussed in many contributions since the rise of cloud com-
puting. For example by Ferrer et al [9] who propose a federation software stack for
cloud providers, Li et al. [18] who investigate the concept of a cloud federator to act
as a middle man between cloud sites and clients, Horn et al. [14] who present an au-
tonomous middleware approach, and Moreno et al. [20] who utilize the concept of vir-
tual network to enable federation. The idea of a Hybrid cloud, i.e. pairing a smaller
private cloud, with a larger public cloud for offloading, together with software to facil-
itate its use has also been investigated [2, 1, 22]. Fog and Edge computing uses similar
ideas to lower the network load by running often used, latency sensitive, applications
close to the users while offloading heavier computations to a core datacenter [5, 25].
The main benefit of our solution is that it is lightweight, requiring no changes to open-
stack, or the provisioning of complex software stacks. The overload controller runs as
a separate process and the HeatSpreader runs externally from the cloud. Together they
provide an easy way to enable two of the most attractive features of cloud federation,
and if they should fail, the cloud sites continues to operate as normal.

6 Conclusions and Future Work

In this short contribution, we designed, implemented and evaluated a lightweight multi-
cloud controller consisting of three small components, the overload controller, the over-
load agent and the HeatSpreader. Together, they are aimed at addressing two common
problems in multicloud scenarios, i.e. cross site offloading and failover. Our evalua-
tion tested these two scenarios and indicated that the mechanisms work, the overload
controller managed to offload to another site when the load was increased above the
threshold and the HeatSpreader detected and handled failover when one of the sites
went down. For future work, we plan to investigate better healthchecking mechanisms



that would improve the failover scenario and more effective algorithms for overload
detection to improve the offloading scenario. It would also be interesting to include
underload detection to complete the cycle of redistribution.
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