
Database Resource Allocation Based on Resilient
Intermediates

Martin Kersten, Ying Zhang, Pavlos Katsogridakis,
Panagiotis Koutsourakis and Joeri van Ruth

MonetDB Solutions
Amsterdam, The Netherlands

<lastname>@monetdbsolutions.com

Abstract—Scale-out of big data analytics applications often
does not pay off due to the poor performance in response time and
the increasing bill due to a longer execution time on a resource
limited machine. To enable a stable DBMS workload environment
it helps to maintain several virtual machines with difference
resource configurations (CPU, memory, disk, etc) hosting part
of the database, so that users can send their tasks to those
machines that have the best price/performance characteristics.
This, however, requires a method to decide which VM should be
used for a given query.

When choosing the VM, the memory usage of a query is a
particularly important factor, especially for the main-memory
(optimised) DBMSs which are generally used for analytical
queries today. In this paper, we introduce MALCOM, a memory
footprint predictor for queries based on resilient intermediates in
MonetDB. Unlike traditional cost-based approaches, MALCOM
uses an empirical approach (i.e. using the memory usage infor-
mation of queries executed in the past) to incrementally update
its model to improve its predictions. Our preliminary experiment
results show that this approach is robust against varying data
distributions.

I. INTRODUCTION

Since the start of database research, database designers have
keenly looked at the opportunities to use large, distributed pro-
cessing platforms. Cluster-based products are readily available,
such as in appliance products from Oracle Exadata [1], SQL
Parallel Data Warehouse [2], IBM Blu [3] and Teradata [4],
but they are often limited to a few tens of compute nodes. A
plethora of research activities [5] has shown that in all but the
simplest cases achieving a good performance is at least hard,
especially when a query involves joins spread over multiple
compute nodes and thus requires expensive data exchange.

The predominant way out nowadays, taken by NoSQL
systems such as Cassandra [6] and Impala [7], is to address
part of the problem space by focusing on select-aggregate
queries. This choice has proven to be pivotal to support big
data analytics in many real-world circumstances, as shown by
the widespread use of Apache Spark [8]. The basic abstraction
in Spark is a Resilient Distributed Dataset (RDD), which
represents an immutable and partitioned collection of elements
that can be operated on in parallel using operators, such as
map, filter, persist and aggregates.

Although in many cases it is easy to scale-up for improved
response time, partitioning a database to benefit from a low
cloud service price tag and to overcome resource limita-

tions of smaller machines is still a much sought-after skill.
This product space is addressed by Snowflake [9] and AWS
Redshift [10]. Snowflake has been designed from a cloud
perspective, taking resource management as its key driving
factor. It conceptually provides every user with a complete
copy of the database and relies on multi-level caching. AWS
Redshift is an improved version of PostgreSQL, which has
been further tuned towards better I/O bandwidth use.

In this paper we take a fresh look at resource allocation
for query processing in the context where intermediates in a
query plan are fully materialised before passed on towards
the next operator. This model fits not only the Apache Spark
programming model, but also the query execution model of
our database system MonetDB [11]. Resilient intermediates
provide new avenues for query optimisation and scheduling
as its underlying computation model is based on materialisa-
tion of all intermediate steps. Furthermore, in most practical
business analytic cases the past is a reasonable predictor of
the future.

The main contributions of this paper are
• we develop a simulator, called MALCOM to predict the

memory footprint for queries based on resilient interme-
diates in MonetDB.

• We demonstrate that the approach is robust against vary-
ing data distributions.

• We demonstrate the opportunities using an extensive
evaluation against TPC-H and a real-world data set.

The approach taken here differs from traditional cost-based
query optimisers [12] deployed in distributed database sys-
tems by learning about actual resource claims over time, i.e.
after each query execution we have precise knowledge of
the resources used. This information can be harvested and
used to predict future operations of a similar nature. The
rationale stems from the common knowledge that any database
application environment has a limited number of “business
transactions” or “business intelligence templates” where only
some parameters are changed with each call. This knowledge
has been used in the past to drive development of DBA
wizards [13] for index selection by humans and self-tuning
optimisers [14] to avoid expensive join paths in individual
queries.

Paper Outline. Section II provides a short overview of the



SQL Parser

SQL CompilerSyntax Tree

MAL Optimisers

MAL Interpreter

MAL 
Programme

Relational 
AlgebraMAL Generator

GDK Kernel

Client

SQL Query

Resultset

SQL Catalog

Legend

Functional Component
Data Structure

BATsBATsBATsBATs

Fig. 1. MonetDB query execution architecture.

MonetDB architecture. Section III introduces the components
and algorithms for our resource estimator MALCOM. Sec-
tion IV illustrates the effectiveness of our approach in two
use cases: TPC-H and air traffic.

II. BACKGROUND

In this section we introduce the query execution engine of
MonetDB and the profiling information available for our task.

A. MonetDB Architecture

MonetDB is a widely used columnar DBMS that internally
uses resilient intermediates to break up query processing in
well identifying steps. A query plan is broken up into indepen-
dent steps, glued together into a dataflow dependency graph.
The dataflow graph is greedily consumed by the database
kernel assigning a dedicated core to each operation. The
resource pressure is kept at a minimum by trimming down the
degree of parallel processing when the main memory resource
is heavily used. The system can be instructed to produce an
event record for each completed instruction. This provides a.o.
insights into the input/output sizes and timing.

Figure 1 illustrates the components of MonetDB to execute
an SQL query. The MonetDB Assembly Language (MAL)1

is the MonetDB internal language into which SQL queries
are compiled and executed. MAL is purely designed as
intermediate language to express the relational operations.
The SQL Parser and MAL Optimiser deploy well-known
rewriting rules (e.g. parallelisation, and dead code/common
expression/constant elimination) to reduce the intermediate
sizes and processing time. They do not rely on any cost-model
or pre-computed statistics.

The middle layer (in the dashed box) is a sequence of
specialised optimisers that morph a logical plan produced by

1https://www.monetdb.org/Documentation/Manuals/MonetDB/
MALreference

the SQL compiler into a physical execution plan containing
relational operators expressed in MAL statements. The bottom
layer (under the dashed box) contains the implementation of
the MAL statements. Each operator takes as input the resilient
intermediates produced by operators executed before or the
persistent data on disk.

As an example, consider this simple SQL query: SELECT

COUNT(*) FROM sys._tables, which is eventually translated
into a physical execution plan in MAL statements to be
executed by the MonetDB kernel. Below is an excerpt of the
trace we have captured when executing our example query.
C_5=<tmp_2141>[100]:bat[:oid] := sql.tid("sys":str, "_tables":str);
X_8=<tmp_154>[100]:bat[:int] := sql.bind

("sys":str, "_tables":str, "id":str, 0:int);
X_17=<tmp_2022>[100]:bat[:int] := algebra.projection

(C_5=<tmp_2141>[100]:bat[:oid], X_8=<tmp_154>[100]:bat[:int]);
X_18=100:lng := aggr.count(X_17=<tmp_2022>[100]:bat[:int]);
sql.resultSet("sys.L3":str, "L3":str, "bigint":str,

64:int, 0:int, 7:int, X_18=100:lng);

This MAL program is straightforward. It first loads (sql.bind)
and projects (algebra.projection) the data of one column
(sys._tables.id) from the disk. Then the data is passed
to aggr.count to compute the COUNT. Finally, sql.resultSet

emits the query result.
Both an execution plan and an execution trace contain a

sequence of MAL statements in the following general form:
VAR=<FILENAME>[COUNT]:VAR_TYPE :=

MOD.FUNC(PARAM1=<FILENAME>[COUNT]:PARAM1_TYPE, ...);

Every function (FUNC) belongs to a module (MOD). The argu-
ments are either typed scalar values (:type) or a reference to
a column (:bat[:type]). If a variable (VAR) or parameter (e.g.
PARAM1) refers to a column, which can be memory mapped, it
is also tagged with its base FILENAME on disk and the number
of values in this column (COUNT). The =<FILENAME>[COUNT]

is an optional part of a MAL statement. It is added to the
corresponding execution trace when a MAL execution plan is
being carried out.

The MAL statements play an important role in MALCOM.
Before executing a query, one can pass the query’s MAL
execution plan to MALCOM to get an estimation of the
memory footprint of this query. After a query execution, one
can pass the query’s execution trace to MALCOM so that
MALCOM can update its model with the statistics of the
actual query execution, e.g. the number of values contained
in the input and output variables of each MAL statement.

B. MonetDB Profiling Information

The MonetDB kernel can be instructed to emit profiling
events for the execution of MAL statements, e.g. by establish-
ing a connection using MonetDB’s profiling tool2. The compu-
tational and memory overhead introduced by this is negligible,
since the profiling information is mostly already available as
a by-product of query executions and the MonetDB server
merely write it to a socket. It is up to the external tools to
capture those events, and process and/or store them.

2https://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler



JSON object at “start” time JSON object at “done” time
{“source”:“trace”, {“source”:“trace”,
“ctime”:1528314717302449, “ctime”:1528314717302680,
“module”:“algebra”, “module”:“algebra”,
“instruction”:“projection”, “instruction”:“projection”,
“state”:“start”, “state”:“done”,
“usec”:0, “usec”:230,
“rss”:87, “rss”:87,
“size”:0, “size”:0,
“nvcsw”:1,
“stmt”:”X 17?:= algebra.projection(?);”, “stmt”:”X 17?:= algebra.projection(?);”,
“ret”:[{ “ret”:[{
“index”:“0”, “index”:“0”,
“name”:”X 17”, “name”:”X 17”,
“alias”:“sys. tables.id”, “alias”:“sys. tables.id”,
“type”:“bat[:int]”, “type”:“bat[:int]”,

“kind”:“transient”,
“count”:“0”, “count”:“92”,
“size”:0, “size”:368,
“eol”:0}], “eol”:0}],

“arg”:[{ “arg”:[{
“index”:“1”, “index”:“1”,
“name”:”C 5”, “name”:”C 5”,
“kind”:“transient”, “kind”:“transient”,
“bid”:“863”, “bid”:“863”,
“count”:“92”, “count”:“92”,
“size”:736, “size”:736,
“eol”:1}, “eol”:1},
{“index”:“2”, {“index”:“2”,

“name”:”X 8”, “name”:”X 8”,
... ...
“eol”:1}]} “eol”:1}]}

Fig. 2. JSON profiling objects produced for an algebra.projection
operation.

Figure 2 shows an excerpt of the before/after profiling
events produced for the algebra.projection operation when
executing the MAL program above. The left column shows
the event at the "start" and the right column the event when
the operation is "done". Differences between the two objects
are marked in red. Of most interest to our estimation are
the properties shown for the arguments ("arg") and return
variables ("ret"). For instance, in a "ret" object, the field
"size" is a good estimation of how much memory the result
set of this function consumes; while in an "arg" object, the
field "eol":1 indicates this argument has reached its end-of-
life. This information together with the "size" allows us to
estimate how much memory is freed after this operation.

III. MALCOM MICRO MODELS

With an abundance of profiling events we can derive a
micro-model for each MAL instruction to estimate their foot-
print. The goal of MALCOM is, given a MAL execution plan
of an SQL query, to estimate the resource needs by only using
information from our memory footprint estimation model.

The algorithm to estimate an upper bound of the memory
needed to execute a MAL plan, is shown in pseudo code below.
When a MAL plan is received, MALCOM first annotates each
MAL statement with an estimation of how much memory
it will consume (i.mem_fprint) and release (i.free_size).
Then the algorithm iterates over the MAL plan (i.e. the
mal_statements below). At each iteration, it adds the memory
footprint of this MAL statement (i.mem_fprint) to the current

total memory consumption (curr_mem) and updates max_mem if
necessary. After that, it adjusts curr_mem with the amount of
memory that will be freed by this statement (i.free_size).
max_mem = 0
curr_mem = 0
for i in mal_statements:

curr_mem += i.mem_fprint
max_mem = max(max_mem, curr_mem)
curr_mem -= i.free_size

After the execution of the MAL plan, we update our mem-
ory footprint estimation model with the observed execution
information. We initialise the estimation model with basic
column statistics (min, max, count, etc.) that can be gathered
using MonetDB’s ANALYZE command.

The estimation model is built by dividing MAL instructions
with similar functionality (most of them represent a relational
operator each) into several groups and abstracting away their
specific signatures. Currently, the model includes ~10 groups.
We briefly analyse each of them below. Note that we only
consider bulk operators here (i.e. taking columns as operands),
which are the default ones in MonetDB.

A. Load instructions

A bind instruction loads (or memory maps) a column into
memory, thus the return size is the size of the column. This
is a worst case assumption, because in practice not all of the
column needs to be loaded.

B. Arithmetic Operators

These operators always return the same number of values
as their operands (MonetDB requires both operands to have
equal size). However, the data type of the output can be a
larger-sized data type than both operands to capture possible
overflow. Hence, their result size is computed as:
arith.rsize = sizeOf(arg1) * sizeof(ret.datatype)

C. Aggregate Operators

This category includes operations such as sum, avg, min,
max, count, single and dec_round. The number of values
returned by these operators equals the number of groups in
which the input data column is divided (by earlier GROUP BY

statements, or 1 if there is no GROUP BY). The most general
signature of these operators takes two operands: arg1 is a
column containing the actual values to work on; arg2 is a
column containing the group IDs, one for each value in arg1.
The output size of an aggregate operator is computed by
multiplying the number of unique values in arg2 with the size
of the return data type.
aggr.rsize = COUNT(DISTINCT arg2) * sizeof(ret.datatype)

D. Limit Operators

This group includes firstn and sample. They return at most
N values from its input column arg as specified by the limit.
Hence, their output size is computed as:
limit.rsize = MIN(COUNT(arg), N) * sizeof(arg.datatype)



E. Grouping Operators

MonetDB currently has 24 grouping operators for different
situations. For instance, the position of the input data column
(arg1) in a GROUP BY SQL clause determines the use of a GROUP

operator or a SUBGROUP operator in MAL. More variations
of GROUP or SUBGROUP operators are used depending on the
availability of auxiliary information (e.g. some statistics of
the input column). However, all grouping operators generally
return three columns of results: (i) a groups column containing
the group IDs, one for each value in arg1; (ii) an extents

column containing the OID (MonetDB internal type for Object
Identifiers, denoting positions of data values in a column)
of a representative of each group; and (iii) a histo column
containing the number of values in each group corresponding
the values in extents. The data type of groups and extents are
both OID, and the data type of histo is LNG (MonetDB internal
type for Long integers). The number of values in extends

and histo is the same, and is estimated using a simple kNN
algorithm based on the statistics of previous queries or basic
statistics of the involved columns. Putting everything together,
the total output size of a grouping operator is estimated as:
group.rsize = COUNT(arg1) * sizeof(OID) +

estimate_nr_groups(arg1) * (sizeof(OID) + sizeof(LNG))

F. Set Operators

For the set operators we mostly compute an upper bound
of the result size using heuristics:
unionall.rsize = sizeof(arg1.datatype) * (COUNT(arg1) + COUNT(arg2))
union.rsize = sizeof(arg1.datatype) *

(COUNT(DISTINCT arg1) + COUNT(DISTINCT arg2))
ntsct.rsize = sizeof(arg1.datatype) *

MIN(COUNT(DISTINCT arg1) + COUNT(DISTINCT arg2))
xcpt_all.size = sizeof(arg1.datatype) * COUNT(arg1)
xcpt.size = sizeof(arg1.datatype) * COUNT(DISTINCT arg1)

Both UNION and UNION ALL return a concatenation of their
two input columns arg1 and arg2, except that UNION eliminates
the duplicates in its result. Hence, unionall.rsize is the
precise result size of a UNION ALL, while union.rsize is
an upper bound of the result size of a UNION, because its
computation does not exclude unique values that exist in both
arg1 and arg2.

INTERSECT returns values that exist in both its input columns
arg1 and arg2 with duplicates eliminated. Hence, ntsct.rsize
is an upper bound of the result size, as its formula does not
exclude unique values that are only in arg1 or only in arg2.

Both EXCEPT and EXCEPT ALL return all values that are in
its first input column arg1 but not in the second column
arg2. In addition, EXCEPT eliminates duplicates. Therefore,
both xcpt_all.size and xcpt.size are upper bounds of their
respective result sizes, since their computations does not
exclude (unique) values that also exist in arg2.

G. Projection Operators

Projection operators extract a small part of a column. The
arguments are a candidate list cand containing the OIDs of
the to-be-projected values and a reference to the (persistent)
column col. The number of elements in the output equals the

number of elements of the candidate list. Hence, their exact
output size is computed as:
proj.rsize = COUNT(cand) * sizeof(col.datatype)

H. Selection Operators

This operator group includes the filter operations
theta-select and select. For these operators, we know that
the output is always smaller than or equal to the candidate
tuples considered. To estimate the result size, traditional
cost-based models assume a uniform distribution of the data
and calculate the fraction of the domain, i.e. the selectivity
factor. In practice, however, the uniform distribution of the
data assumption does not always hold, so these models have
limited accuracy. In our model, we keep the results of a
series of actual filter operations, so as to use them to find
a “historical nearest-neighbour” for any filter operation in a
MAL plan whose cost we need to estimate.

The select operators are abstracted into a single template
with three operands sel(col, range, op), where col is a
reference to the (persistent) column, range is the selection
range (low, high), and op is the comparison operator (<, >,
<=, >=, etc). In our model, we keep a dictionary of all the
selections executed so far in the format of this signature, with
an extra attribute cnt to denote the number of values selected.

The estimation for a selection operator sel(col, range,

op) works as follows. First, we find in the dictionary records
of all previous selections on the same col with the same op.
Then, we use a k nearest neighbour (kNN) procedure to find
the 5 nearest records based on the selection range. Next, for
each of the 5 records, we extrapolate the number of selected
values based on the selectivity and input column size. Finally,
we compute the estimated memory footprint of this selection
as the average of the 5 extrapolations, multiplied by the data
size of the input column. This estimation procedure is shown
in the pseudo code below:
extrap = 0
for dict in kNN(dictionary, sel, 5)

extrap += dict.cnt * (COUNT(sel.col) / COUNT(dict)) *
(sel.range / dict.range)

sel.rsize = extrap/5 * sizeof(sel.col.datatype)

I. Join Operators

For a cross product of two columns (col1, col2) we know it
will return COUNT(col1) * COUNT(col2) number of values. The
cross product operator of MonetDB takes two data columns
as its inputs, and returns two columns where each column
contains OIDs referring to data values in an input column.
The two OID columns together denote how the values from
the input columns are aligned in the cross product result. So
the exact output size of a cross product is computed as:
cp.rsize = COUNT(col1) * COUNT(col2) * sizeof(OID) * 2

The estimation model for the other join operators is similar
to that of selection operators. Again, the signatures of all
join operators can be abstracted into a single one with three
operands join(col1, col2, op), where col1 and col2 are the
input column, and op the join operator (eq, left, outer, etc).



We also keep a dictionary of all the previous joins in the
format of this signature, annotated with an extra value cnt

to denote the number of values returned by that particular
join operation. To estimate the result size for a join operator
join(col1, col2, op), we first find in the dictionary records
of all previous selections on the same columns with the same
op. Then, we run a kNN to find the 5 nearest records based
on the sizes of the input columns. Finally, we extrapolate the
result count based on the input column sizes, and compute the
result size (like cross product, two OID columns are returned).
The pseudo code is shown below:
extrap = 0
for dict in kNN(dictionary, join, 5)

extrap += dict.cnt * (COUNT(join.col1) / COUNT(dict.col1)) *
(COUNT(join.col2) / COUNT(dict.col2))

sel.rsize = extrap/5 * sizeof(OID) * 2

Optimiser Simulator Architecture. With the micro-models
in place, we can use a simple MAL-simulator to obtain a
fairly accurate indication of the memory footprint. In its basic
form it simulates a sequential execution of the query. The full-
blown version uses the same scheduling method as within the
MonetDB code base to approximate the parallel behaviour.

IV. EVALUATION

In this section we discuss the results obtained with the
MALCOM prototype. For our experiments we used both TPC-
H and the air traffic3 benchmarks. The former is the baseline
against which most database systems are evaluated. Its major
weakness is the uniform data distribution. Although TPC-H
simplifies the analysis of the quality of a space predictor, it is
not representative of real-life workloads. Therefore, we also
use the air traffic benchmark, which consists of a single table
with >120M rows and 100 columns of flight information. The
data in this benchmark is skewed.

A. TPC-H

To test MALCOM against TPC-H we created a query gen-
erator, which changes the parameters in the official benchmark
queries. As a training set for each query, we randomised every
selection point and range to produce 200 random versions of
the query. As a test set we used the original queries. A key
factor is to understand how long it takes before MALCOM’s
prediction converges to the actual memory footprint. There-
fore, we update MALCOM’s model with the traces of the
training queries one by one. After each iteration, we evaluate
the accuracy of MALCOM’s prediction using the test queries.
We have run all 22 TPC-H queries. Most of their predictions
rapidly converge to the actual memory footprint due to the
uniform data distribution of TPC-H. Hence, for reasons of
space, we only show the results of some more remarkable
queries here.

Initial experiments led to the results such as shown in
Figure 3, where the x-axis shows the number of training
queries used and y-axis shows the percentage of deviation of
the estimation from the actual footprint. Q1 is a simple large

3https://github.com/MonetDBSolutions/airtraffic-benchmark

de
vi

at
io

n 
= 

(e
st

im
at

ed
 –

ac
tu

al
)/a

ct
ua

l*
10

0

No. of training queries

Q01

Q06

Fig. 3. TPC-H queries Q1 and Q6 prediction deviations

scan followed by an aggregation. The sole parameter is the
value range. The experiment shows a steep learning curve,
which can be attributed to the uniform distribution. However,
it also results in a little overfitting. Q6 is also mostly a simple
scan and aggregate query, but here the number of tuples are
less. This experiment shows that MALCOM takes much longer
to reach an almost perfect prediction of the memory footprint.

B. Air Traffic

The air traffic benchmark is a real-world example of busi-
ness intelligence application. The data is represented by a
single table, and it is highly skewed and sparse. The bench-
mark contains 19 queries range from simple select-group-
aggregate to complex self joins that require careful processing
strategies. We have created training queries and test queries,
and evaluated MALCOM’s prediction in the same way as what
we did with the TPC-H evaluation. We tested MALCOM with
all 19 queries. In general, the prediction gradually converges
to the actual memory footprint. Here we high light several
remarkable cases.

Figure 4 show how MALCOM’s predictions converge for
queries 4, 10, 15 and 19. Again we can observe both some
under- and over-estimations, which all improve over time.
Albeit they take more queries to stabilise than in the TPC-
H experiments. This is because the air traffic data is highly
skewed. In addition, the graphs of Q04, Q15 and Q19 illus-
trate that MALCOM does not always improve its predictions
monotonically, which is also caused by the skewness of data.

V. RELATED WORK

The approach taken in this project can best be compared
with the long tradition in database query optimisers and



Q04

Q15

de
vi

at
io

n 
= 

(e
st

im
at

ed
 –

ac
tu

al
)/a

ct
ua

l*
10

0

No. of training queries

Q10

Q19

de
vi

at
io

n 
= 

(e
st

im
at

ed
 –

ac
tu

al
)/a

ct
ua

l*
10

0

No. of training queries

Fig. 4. Air traffic queries prediction deviations

database design wizards. They all collect query traces from
an actual production system and use them to derive, e.g., an
optimal set of search accelerators [15]. This process seeks a
balance between index creation and maintenance, but primarily
deals with performance optimisation. The memory footprint is
of less concern. Alternatively, it extends the work on gathering
query traces to (semi-)automatically improve the cost model
for query optimisation [16]. A better statistics improves both
performance and resource use. All these systems focus on a
relative small and fixed compute cluster or database appliance.

In a more recent project [17] the authors gather sub-plans
from the query trace log and use it as the building block for
new queries. They show that reuse of good plans, i.e. based
on past behaviour, leads to both a faster optimisation step and
overall better performance. MALCOM does not address the
optimiser itself, but assumes that a physical plan has already
been produced. It merely determines which virtual machine
can handle the plan comfortably.

VI. SUMMARY AND OUTLOOK

In this paper we proposed a novel resource allocation
technique for a database engine using resilient intermediates.
The MALCOM prototype is a crucial tool in the design of
cloud-based database management solution. The initial results
are promising, i.e. a relatively low number of queries are
sufficient to get a good memory footprint estimation.

In the near future, we plan to extend MALCOM to also
look at the memory footprint in relationship of the parallel
execution. This should lead to a lower bound on the memory
footprint at the cost of running slower. Both memory footprint
and degree of parallelism enables users to optimise their
systems based on costs or response times.

ACKNOWLEDGMENTS

This research has received funding from the European
Union’s Horizon 2020 research and innovation program under
Grant Agreement no. 732366 (ACTiCLOUD).

REFERENCES

[1] M. Bach et al., Expert Oracle Exadata, 2nd ed. Berkely, CA, USA:
Apress, 2015.

[2] T. Stöhr, H. Märtens, and E. Rahm, “Multi-dimensional database al-
location for parallel data warehouses,” in Proceedings of the 26th
International Conference on Very Large Data Bases, 2000.

[3] V. Raman et al., “Db2 with blu acceleration: So much more than just a
column store,” Proc. VLDB Endow., vol. 6, no. 11, Aug. 2013.

[4] W. O’Connell et al., “A teradata content-based multimedia object
manager for massively parallel architectures,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1996.

[5] M. T. Ozsu, Principles of Distributed Database Systems, 3rd ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2007.

[6] “Apache cassandra,” http://cassandra.apache.org.
[7] “Apache impala,” https://impala.apache.org.
[8] “Apache spark,” https://spark.apache.org.
[9] B. Dageville et al., “The snowflake elastic data warehouse,” in Proceed-

ings of the International Conference on Management of Data, 2016.
[10] A. Gupta et al., “Amazon redshift and the case for simpler data

warehouses,” in SIGMOD, 2015, pp. 1917–1923.
[11] “MonetDB,” http://www.monetdb.org.
[12] S. Chaudhuri, “An overview of query optimization in relational systems,”

in Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ser. PODS ’98, 1998,
pp. 34–43.

[13] https://www.microsoft.com/en-us/research/project/autoadmin/.
[14] https://www.ibm.com/us-en/marketplace/datarcs-optimizer.
[15] S. Chaudhuri and V. R. Narasayya, “Self-tuning database systems: A

decade of progress,” in VLDB, September 2007, pp. 3–14.
[16] V. Markl, G. M. Lohman, and V. Raman, “LEO: an autonomic query

optimizer for DB2,” IBM Systems Journal, vol. 42, no. 1, 2003.
[17] B. Ding et al., “Plan stitch: Harnessing the best of many plans,” PVLDB,

vol. 11, no. 10, pp. 1123–1136, 2018.


