
Heterogeneous Managed Runtime Systems:

A Computer Vision Case Study

Christos Kotselidis, James Clarkson, Andrey Rodchenko,

Andy Nisbet, John Mawer, and Mikel Luján
School of Computer Science
The University of Manchester

Oxford Road, Manchester, M13 9PL, UK
{christos.kotselidis,james.clarkson,andrey.rodchenko,andy.nisbet,john.mawer,mikel.lujan}@manchester.ac.uk

Abstract
Real-time 3D space understanding is becoming preva-
lent across a wide range of applications and hardware
platforms. To meet the desired Quality of Service (QoS),
computer vision applications tend to be heavily paral-
lelized and exploit any available hardware accelerators.
Current approaches to achieving real-time computer vi-
sion, evolve around programming languages typically as-
sociated with High Performance Computing along with
binding extensions for OpenCL or CUDA execution.
Such implementations, although high performing, lack

portability across the wide range of diverse hardware
resources and accelerators. In this paper, we showcase
how a complex computer vision application can be im-
plemented within a managed runtime system. We dis-
cuss the complexities of achieving high-performing and
portable execution across embedded and desktop con�g-
urations. Furthermore, we demonstrate that it is possible
to achieve the QoS target of over 30 frames per second
(FPS) by exploiting FPGA and GPGPU acceleration
transparently through the managed runtime system.

Keywords GPU Acceleration, Java Virtual Machines,
Heterogeneous Runtime Systems, SLAM, Computer Vi-
sion

1 Introduction
Computer Vision (CV) applications, and in particular
real time 3D space understanding, are becoming increas-
ingly prevalent in both desktop and mobile domains. A
good example is the �eld of robotics, where researchers
are developing complex applications which demand high
levels of performance. Furthermore, such applications
could be deployed across di�erent scenarios with diverse
characteristics. For instance, the same CV application
could be used in isolation to map a room using a mobile

VEE'17, China

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is the author's version of the work. It
is posted here for your personal use. Not for redistribution. The
de�nitive Version of Record was published in Proceedings of April
08 - 09, 2017, Xi'an, http://dx.doi.org/http://dx.doi.org/10.1145/3050748r.
3050764.

phone [35] or as a sub-component of a navigation system
within a self-driving car [8].
A common characteristic of CV applications, regard-

less of the scenario they are used, is their extreme com-
putational demands. Typically, they are written in pro-
gramming languages such as C++ and OpenMP with
binding extensions for OpenCL or CUDA execution. For
example SLAMBench [27], a widely available benchmark
that implements the Kinect Fusion (KF) application
[28], provides implementations for all the aforementioned
programming languages. A common drawback of such
implementations is the lack of portability since the ap-
plications have to recompiled and optimized for each
underlying hardware platform. Building and optimizing
CV applications on top of a managed runtime system
such as the Java Virtual Machine (JVM) would enable
single implementations to run across multiple devices
such as desktop machines or Android powered devices.
In the context of this paper we describe our experi-

ences related to achieving a high-performing Java im-
plementation of the Kinect Fusion application. After
implementing and validating SLAMBench in Java, we
performed an initial evaluation to identify performance
bottlenecks. Consequently, we revised two optimization
techniques leveraging the underlying heterogeneous hard-
ware resources in order to meet the QoS target of the
CV application. The developed optimizations follow two
approaches: 1) a general purpose OpenCL accelerator,
and 2) an application speci�c FPGA accelerator.
In detail, the paper makes the following contributions:

• Describes the implementation of a complex CV
application in Java.

• Describes our work on providing a high-performing
research JVM (Maxine VM) on low-power ARM
architectures.

• Introduces two novel hardware acceleration tech-
niques via the JVM which leverage FPGAs and
GPGPUs transparently.

• Showcases that with the proposed acceleration
techniques we are able to meet the QoS target of
30 FPS of a common CV application achieving
up to 47X speedup compared to the original C++
implementation.

1

http://dx.doi.org/http://dx.doi.org/10.1145/3050748r.3050764
http://dx.doi.org/http://dx.doi.org/10.1145/3050748r.3050764

VEE’17, Xi’an, China C. Kotselidis et al.

The paper is organized as follows: Section 2 presents
the Computer Vision application that forms the use case
in this paper. Section 3 explains the novel acceleration
techniques developed along with the experimentation in-
frastructure. Finally, Section 4 presents the performance
evaluations while Sections 5 and 6 present the related
work and the concluding remarks, respectively.

Figure 1. RGB-D camera combines RGB with Depth
information (top left and middle). The tracking (left)
results in the 3D reconstruction of the scene (right).

2 Kinect Fusion
Kinect Fusion (KF) is a Computer Vision application
which reconstructs a three-dimensional representation
from a stream of depth images produced by a RGB-D
camera (Figure 1), such as the Microsoft Kinect. KF is
described in [28] and a number of open-source implemen-
tation are provided by SLAMBench [27].
KF is a challenging application because in order to

achieve its QoS target it needs to operate at the frame
rate of the camera, which is 30 frames per second (FPS).
Dropping below this frame rate means that pose changes,
in both the camera and the subject, have the potential
to become greater and, subsequently, �nding correspon-
dences between frames becomes increasingly di�cult. KF
is also interesting from an implementation perspective
since there is an abundance of parallelism which can be
exploited to improve its performance. Implementation-
wise, some of the kernels are very large. For example,
raycast is close to 250 lines of code (LOC) and expands
to 1000 LOC in the OpenCL implementation while its
performance is constrained by complex data dependen-
cies.

2.1 Processing Pipeline

KF uses a stream of depth images from a Kinect camera
as input to a six-stage processing pipeline (Figure 2a):

1. acquisition obtains the next RGB-D frame - either
from a camera or from a �le.

2. pre-processing is responsible for cleaning and in-
terpreting the raw data by: applying a bilateral
�lter to remove anomalous values, rescaling the in-
put data to represent distances in millimeters and,

Track Host Solve Device

Track Host Solve Device

Track Host Solve Device

4 Iterations
 80x60

5 Iterations
160x120

10 Iterations
320x240

Preprocessing

Tracking

Integration

Raycast

Rendering

Acquisition

Input

(a) (b)

Figure 2. Kinect Fusion Pipeline stages.

Kernel Stage Invocations

mm2meters preprocess 1

bilateral �lter preprocess 1

half sample track 3

depth to vertex track 3

vertex to normal track 3

track track 1 - 19

reduce track 1 - 19

integrate integrate 0 - 1

raycast raycast 0 - 1

render depth rendering 0 - 1

render track rendering 0 - 1

render volume rendering 0 - 1

Total - 18 - 54

Table 1. List of KF kernels.

�nally, building a pyramid of vertex and normal
maps using three di�erent image resolutions.

3. tracking estimates the di�erence in camera pose
between frames. This is achieved by matching the
incoming data to an internal model of the scene
using a technique called Iterative Closest Point
(ICP) [6, 39].

4. integrate fuses the current frame into the inter-
nal model, if the tracking error is less than a
predetermined threshold.

5. raycast constructs a new reference point cloud
from the internal representation of the scene.

6. rendering uses the same raycasting to produce a
visualization of the 3D scene.

Each stage of the KF pipeline, as implemented in SLAM-
Bench, is composed of a series of kernels. The breakdown
of pipeline stages and invocation counts per kernel are
shown in Table 1. We can see that a single frame of
RGB-D data will require the execution of 18 to 54 ker-
nels; in the best and worst case scenarios respectively.
The variation is due to the performance of the tracking
algorithm. If it is able to estimate the new camera pose
quickly then fewer kernels will be executed. Therefore,
to achieve a frame rate of 30 FPS, the application must
sustain the execution of between 540 and 1620 kernels
every second.

2

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

2.2 Tracking Algorithm

The tracking stage of the KF algorithm, depicted in
Figure 2b, is the most complex in the pipeline and it uses
an Iterative Closest Point (ICP) algorithm to estimate
the di�erence in camera pose between two point clouds.
The algorithm has two stages: 1) it �nds correspondences
between the incoming frame and its internal model -
returning the error associated with each correspondence
and, 2) it uses a least-squares approach to identify a
new camera pose which minimizes this error. Finally,
the algorithm iterates until the error is below a pre-
con�gured threshold.
The complexities of implementing the tracking stage

are compounded by using an iterative multi-scale ICP
algorithm. In cases where KF is able to use a hardware
accelerator, such as a GPGPU, the tracking algorithm
is split so that the correspondences are found on the ac-
celerator and the error minimization on the host. Conse-
quently, in this situation, each iteration of the algorithm
is required to transfer data between two memory spaces
on the host and device (illustrated as diamonds in Figure
2b). The tracking kernel performs regular data transfers
of 2.34 MB (320x240), 600 KB (160x120), and 150 KB
(80x60) to the host. On the contrary, the host needs to
transfer the new pose to the device after each iteration.
Since each pose is represented by a 4×4 matrix, 64 bytes
are required.

2.3 Measuring Performance and Accuracy

A challenge when comparing di�erent implementations
of KF, and CV algorithms in general, is that performance
and accuracy measures are subjective. Normally, this
is due to the real measure of the algorithmic quality
being the user experience: does the user notice slow
performance and is it accurate enough for their needs?
Nevertheless, we must ensure that each implementation
of KF does the same work and produces the same answer.
Therefore, out of a number of KF implementations we
have selected the ones provided by SLAMBench since
they provide ready-made infrastructure to measure the
performance and accuracy, enabling reliable comparisons
between di�erent implementations.
The accuracy of each reconstruction is determined

by comparing the estimated trajectory of the camera
against a provided ground truth, and is reported as
an absolute trajectory error (ATE). The ground truths
are provided by the synthetically generated ICL-NUIM
dataset [18]. Finally, the performance is measured as the
average frame rate achieved when processing the entire
dataset.

2.4 Portability Issues

SLAMBench provides implementations in C++, OpenMP,
CUDA, and OpenCL, enabling various performance

points depending on the hardware unit executed. How-
ever, to achieve portability, current SLAMBench imple-
mentations, at the very least, have to be re-compiled on
every platform; something that is not always possible
e.g. OpenMP on OSX.
Another issue is that users may have to re-write key

kernels for each target device. For example, reduction-
style kernels are implemented to exploit a speci�c inter-
nal organization of a device. This means that the code
will have to be re-written if the organization changes, or
more subtly if some physical characteristics of the device
changes, such as the amount of local memory or the
maximum number of work items in a work group. This
is a problem which a�ects all languages since developers
may need to change tile sizes and thread scheduling for
each device.
Programming languages implemented on top of man-

aged runtime systems, such as the JVM, allow applica-
tion execution regardless of operating system or hard-
ware architecture. However, such implementations may
perform slower especially in scenarios where heteroge-
neous acceleration is involved. In the remainder of the
paper we discuss a number of techniques that can be
used to accelerate the performance of our portable Java
Kinect Fusion implementation in order to achieve our
desired QoS level.

2.5 Java Implementation

Our Java reference implementation is derived from the
open-source C++ version provided by SLAMBench. Dur-
ing porting, we ensured that the Java implementation
produces bit-exact results when compared to the C++
one1. This is highly important, and challenging, since
Java does not support unsigned integers. Therefore, we
had to modify the code to use signed representations
and maintain correctness. Although all kernels produce
near identical results during unit-testing, each imple-
mentation can produce slightly di�ering results when
combined together due to the nature of �oating-point
arithmetic.
We have developed the Java implementation with

minimal dependencies on third-party code and we do
not use any form of Foreign Function Interface (FFI) or
native libraries. Our only dependency is on the EJML
library [15] for its implementation of SVD. During a
preliminary performance analysis, we discovered that the
C++ implementation is 3.4X faster than Java. Despite
outperforming Java, the C++ implementation barely
manages to achieve 4 FPS: which is much lower than
the expected QoS target of 30 FPS. To achieve such
high levels of performance, we have two options: 1) make
better use of the available hardware resources, and/or
2) use a hardware accelerator.

1Even if this failed, it came within 5 Units of Last Place (ULP).

3

VEE’17, Xi’an, China C. Kotselidis et al.

ARMv7x86-64 GPUs FPGAs

H
ar

dw
ar

e

Maxine VM

T1X

OpenCL
Heterogeneous

Accelerator

Java7, Java8, C++, OpenMP KFusion Implementations
(derived fromSLAMBench)

Native
(C++/OpenMP)

A
pp

lic
at

io
ns

R
un

tim
e

La
ye

r OpenJDK
C1X/Graal

Client

Memory
Manager (GC)

Memory
Manager (GC)

MAST
FPGA Accelerator

Framework

Figure 3. Architecture overview.

3 Heterogeneous Managed Runtime Systems
One of the key aspects of this work is to demonstrate that
computationally intensive applications can be created in
a hardware agnostic manner; they can be written once
and run everywhere while achieving their performance
targets. Therefore, we explore application performance
over a wide range of devices ranging from desktop to
embedded. Regarding low-power architectures, we exper-
iment with both an industrial-strength and a research
virtual machine; OpenJDK JVM [30] and Maxine VM
[36] respectively.
After achieving a baseline, yet slow, Java implemen-

tation of the KF application, our next objective was to
optimize it by accelerating its kernels using a range of
hardware accelerators. We followed two approaches for
acceleration: 1) general purpose acceleration where we
provide a framework to re-compile the application for a
target accelerator, such as a GPGPU and, 2) an applica-
tion speci�c approach where key kernels are o�-loaded
onto an FPGA. Since no available production-quality
JVM supports either GPGPU2 or FPGA execution, out-
of-the-box, we implemented: 1) an OpenCL accelerator
for GPGPU o�oading, and 2) an FPGA compatible
library for dynamic o�oading through the JVM.
The following subsections describe in detail the sub-

systems of the experimental infrastructure depicted in
Figure 3: Section 3.1 presents the MREs while Sections
3.2 and 3.3 discuss the OpenCL and FPGA components
respectively.

3.1 Maxine Research Virtual Machine

One of our key objectives is to enable JVM research on
low-power ARM architectures. Therefore, besides using
the production quality OpenJDK JVM we opted for a
research JVM also. To overcome the lack of research-
based JVMs on ARM systems, we have ported Maxine
VM onto ARMv7 32 bit architectures3.

2IBM's J9 JVM supports GPGPU acceleration but does not pro-
vide enough functionality to run SLAMBench.
3An AArch 64 bit port of Maxine VM is also underway. Further-
more, both ports will be open-sourced.

The Maxine VM, a meta-circular Java-in-Java VM
developed by Oracle Labs, has been adopted and aug-
mented in the context of this paper. Since its last release
from Oracle, we have enhanced it both in performance
and functionality. In detail, the latest release of Max-
ine from Oracle had the following three compilers: 1)
T1X: a fast template-based interpreter (stable), 2) C1X:
An optimizing SSA-based JIT compiler (stable), and 3)
Graal: an aggressively optimizing SSA-based JIT com-
piler. Furthermore, the Maxine VM could execute only
on x86-64 bit architectures resulting in many of its part
to be tightly coupled for 64 bit architectures.
Since our main objective is to provide to the commu-

nity a state-of-the-art research JVM for both x86 and
low-power ARM architectures we enhanced Maxine VM
as follows:

1. T1X: Added pro�ling instrumentation enabling
more aggressive pro�le-guided optimizations ap-
plicable to all underlying architectures.

2. T1X: Compiler ports to ARMv7 and Aarch64
enabling experimentation on low-power 32bit and
64bit architectures.

3. C1X: Compiler port to ARMv7 enabling experi-
mentation on low-power ARM 32bit architectures.

4. Graal: Stability and performance improvements.
5. Maxine: Complete ARMv7 support, stability, and

performance enhancements.

Furthermore, the work on providing an ARM-compatible
research JVM entailed a number of modi�cations to the
original Maxine VM implementations such as: 1) addition
of an extra word in object headers in order to store hash
codes, 2) a complete re-design of the locking schemes
to accommodate for both thin and thick locks, and 3)
augmentation of the register allocator to account for
dual-register allocation for long and double types.
To provide a baseline performance comparison between

Maxine and OpenJDK JVM we tested both JVMs on
x86 and ARMv7 architectures. Figures 4 and 5 illustrate
their performance di�erences on Dacapo9.12-bach [7]
and SpecJVM2008 [33] respectively. Unfortunately, we
could not compare against JikesRVM [1] since it can not
run the Dacapo9.12-bach benchmarks on x86-64.
Regarding x86-64, as illustrated in Figure 4, since

Oracle's last release (Maxine-Graal-rev.20290 Original),
performance has been increased by 64%4 (Maxine-Graal-
rev.20381 Current). Although Maxine's performance is
half of the of industrial strength OpenJDK, which uses
the more performant C2 and Graal (rev. 21075) compil-
ers, our goal is to drive up performance until Maxine is
on par with OpenJDK. Primarily, this will be achieved by
enabling more aggressive Graal optimizations in Maxine
such as escape analysis [34] and other compiler intrinsics.

4Intel(R) Core(TM) i7-4770@3.4GHz, 16GB RAM, Ubuntu
3.13.0-48-generic, 16 iterations, 12GB heap.

4

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

57.08

75.98
81.63

36.36

86.30

68.96

90.49

35.13
26.13

99.7

44.8

72.64

37.53

50.34

0
10
20
30
40
50
60
70
80
90
100

Hotspot-C2-1.8.0.25 Hotspot-Graal-21075 (Original) Maxine-Graal-20290 (Original) Maxine-Graal-20381 (Current)

Figure 4. DaCapo-9.12-bach benchmarks (higher is better) normalized to Hotspot-C2-1.8.0.25, x86-64bit.

12
20

8

29
17

5
14

8

25

6

27
20 18

57
44

13

31
22

38
28

40

20
34

65
76

24

50

31

49 47

0

20

40

60

80

geomean startup compiler compress crypto derby mpegaudio scimark sunflow xml

MaxineVM-ARMv7 OpenJDK_1.7.0_40-Client OpenJDK_1.7.0_40-Server

Figure 5. SpecJVM2008 benchmarks (higher is better) normalized to OpenJDK-Zero-IcedTea6_1.13.11, ARMv7-32bit.

Regarding ARMv7, as depicted in Figure 55 the per-
formance of Maxine VM falls between the performance
of OpenJDK-Zero and OpenJDK-1.7.0-(Client, Server).
Maxine VM outperforms OpenJDK-Zero by 12x on aver-
age across SpecJVM2008, while it is on average around
2.3x and 3.3x slower than the OpenJDK-1.7.0 client and
server compilers respectively.

3.2 General Purpose OpenCL Acceleration

To improve the productivity of the developers, targeting
heterogeneous hardware, we designed and developed
an OpenCL accelerator. The key di�erence between the
proposed OpenCL Accelerator and existing programming
languages and frameworks is its dynamism; as such,
developers do not need to make a priori decisions about
their hardware targets. To achieve this, our framework
exploits the new JVMCI (Java Virtual Machine Compiler
Interface) [22] capabilities to Just-In-Time (JIT) compile
Java bytecode to execute on OpenCL compatible devices.
As depicted in Figure 6, our API provides developers

with a task-based programming model. A task can be
thought of as being analogous to a single OpenCL kernel
execution. This means that a task must encapsulate the
code it needs to execute, the data it should operate
on, and some meta-data. The meta-data can contain
information such as the device it should execute on
or pro�ling information. The mapping between tasks
and devices is done at a task-level granularity; each
task is capable of being executed on a di�erent piece of
hardware. These mappings can be provided either by
the developer or by a runtime component.

5Samsung Chromebook, Exynos 5 Dual@1.7GHz, 2GB RAM,
Ubuntu 3.8.11, 2GB heap. Serial was excluded from the eval-
uation.

Task Graph

Methods

OpenCL/Java API

preprocessingGraph = new TaskGraph()
 .streamIn(depthImageInput)
 .add(ImagingOps::mm2metersKernel,
 scaledDepthImage,
depthImageInput, scalingFactor)
 .add(ImagingOps::bilateralFilter,
 pyramidDepths[0],
scaledDepthImage,
 gaussian, eDelta, radius)
 .mapAllTo(deviceMapping);

Optimized
Graph

- Users create Task Graphs
with our OpenCL API.

Graph Optimizer

- The compiler expands
graphs to include data
movement.
- Graph is optimized to
remove redundant data
transfers.

Runtime

Code Cache Memory

Task Queue

Device

Device Device Device…

- Runtime schedules tasks on devices.

Figure 6. OpenCL Accelerator outline.

Instead of focusing on scheduling individual tasks, we
allow developers to combine multiple tasks together to
form a larger schedulable unit of work (called a task-
graph). This approach has a number of bene�ts: �rstly,
it provides a clean separation between the code which
co-ordinates tasks execution and the code which per-
forms the actual computation; and secondly, it allows
the runtime system to exploit a wider range of run-
time optimizations. For instance, the task-graph provides
the runtime system with enough information to deter-
mine the data dependencies between tasks. By using this
knowledge, the runtime system is able to exploit any
available task parallelism by overlapping the execution
of task execution and data movement. It also provides
the runtime system with the ability to eliminate any
unnecessary data transfers that would occur because of
read-after-write data dependencies between tasks.
To increase developer productivity, we make o�oading

computation as transparent as possible. This is achieved
via the runtime system which is able to automatically
schedule data transfers between devices and handle the
asynchronous execution of tasks. Moreover, the JIT com-
piler provides support for user-guided parallelization.
As a result, the developers are able to rapidly develop
portable heterogeneous applications which can exploit
any OpenCL compatible device in the system.

5

VEE’17, Xi’an, China C. Kotselidis et al.

Figure 7. MAST overview.

3.3 Application Speci�c FPGA Acceleration

As depicted in Figure 3, we target a variety of hardware
platforms and therefore signi�cant e�ort is being placed
in providing the appropriate support for the compilers
and runtimes of choice. Besides targeting conventional
CPU/GPU systems, it is also possible to target FPGA
systems such as the Xilinx Zynq ARM/FPGA System
on Chip (SoC). In order to e�ciently program FPGAs
using high level programming languages, we developed
MAST: a Modular Acceleration and Simulation Tech-
nology (Figure 7).
MAST is a C++ software library, combined with Blue-

spec [3] hardware IP library, and tools designed to allow
the rapid development of �exible hardware accelerators
on Xilinx Zynq SoCs. MAST allows easy integration of
accelerators into software systems, without the need to
worry about drivers. This allows the decoupling of hard-
ware and software engineers, allowing them to concen-
trate on hardware and user-space software development
respectively. For systems exclusively containing MAST
components, Xilinx Vivado scripting allows for the auto-
matic implementation of systems from Verilog netlist to
bitstream without user intervention. This allows software
engineers to deploy new hardware con�gurations without
the requirement to learn complex EDA tools and device
speci�c features. The software library implements the
SimCtrl controller: a module which allows the discov-
ery of MAST compliant IP on the FPGA at run time.
Any IP block can then be locked, at a thread or process
level, or reserved by a process for future locking; protec-
tion is provided against IP being locked by terminated
tasks. Users can request speci�c IP from the SimCtrl
and it will, assuming availability, return a SimObject
which allows them to manipulate the IP block using
simple register access. MAST supports IP master trans-
fers allowing memory access from the processor system
memory. This typically operates via a coherency port,
ACP in the case of Zynq 7000, allowing arbitrary pages
of the parent processes to be read or written to from
hardware. In this case, the hardware accelerator acts as
a �virtual thread" being set o� and synchronized at a

Opt 1: GPU Acceleration 2: FPGA Acceleration
Module OpenJDK, Graal OpenJDK, Maxine

Hardware

CPU
Intel Xeon E5-2620 @ 2GHz Xilinx Zynq 706 board

ARMv7 Cortex A9
Cores 12 (24 Threads) 2
L1 32KB per core, 8-way 32KB per core
L2 256KB per core, 8-way 512KB per core
L3 15MB, 20-way -

RAM 32GB 1GB

GPU
NVIDIA Tesla K20m -

@ 0.705GHz, OpenCL 1.2 -
Ext. OpenCL Accel. MAST FPGA

Software

JVM
OpenJDK, Graal Maxine ARMv7

- OpenJDK_1.7.0_40
OS CentOS 6.8 (Kernel 2.6.32) Linux 3.12.0-xilinx-dirty

Table 2. Hardware and Software con�gurations.
later date whilst the processor continues operating on
other tasks. The availability of both master and slave
interfaces on IP allows for simple, �exible, and high
performance links between the MAST software and IP
libraries. Usually, for a speci�c IP block, the user will
derive a new Class from the SimObject, allowing more
complex operations at a higher level of abstraction from
the hardware. Such abstraction is typically achieved with
a few lines of simple code.
The hardware IP library consists of a set of parame-

terized IP blocks for performing not only basic tasks but
also complex high level libraries. The low level blocks
handle the IP / software interface, taking care of FPGA
bus protocols, device discovery, locking and high speed
memory interfaces. The higher level modules currently
include memory system models and processor timing
models for gathering statistics from either static execu-
tion traces or dynamically instrumented applications.

4 Evaluation
The following subsections describe the acceleration and
optimization techniques applied to Kinect Fusion (KF)
along with the experimental results. The hardware and
software con�gurations for each optimization are shown
in Table 2.

4.1 GPGPU Acceleration

GPGPU acceleration has been applied to KF through our
OpenCL accelerator (Section 3.2). All, but one6, kernels
of KF have been dynamically compiled and o�oaded
for GPGPU execution through OpenCL code emission.
Figures 8 and 9, illustrate the performance and speedup
of the accelerated KF version respectively.
As depicted in Figure 8, the original validated ver-

sion of Kinect Fusion can not meet the QoS target of

6Acquisition can not be accelerated because the input is obtained
serially.

6

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

C++ - 2.72 FPS

Java - 0.81 FPS

Java/OpenCL

 - 33.13 FPS

0

10

20

30

0 500 1000

Frame Number

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

Figure 8. FPS of Java/OpenCL versus baseline Java and
C++.

10

1000

Acq. Pre. Tra. Int. Ray. Rend. Total

Pipeline Stage

S
p

e
e

d
u

p
 O

v
e

r
J
a

v
a

 (
lo

g
1

0
)

C++ Java/OpenCL

Figure 9. Java/OpenCL and C++ speedup over serial
Java per KF stage.

real-time Computer Vision applications (0.71 FPS on
average). Both the serial versions of Java and C++ per-
form under 3 FPS with the C++ version being 3.4x
faster than Java. By accelerating KF through GPGPU
execution we manage to achieve a constant rate of over
30 FPS (33.13 FPS) across all frames (882) from the
ICL-NUIM dataset [17] (Room 2 con�guration). In or-
der to achieve 30 FPS, all kernels have been accelerated
by up to 821.20x with an average of 47.84x across the
whole application, as depicted in Figure 9. By utilizing
our OpenCL acceleration infrastructure, we manage to
dynamically accelerate a simple un-optimized serial Java
version of a KF algorithm meeting its QoS requirements
in a transparent to the developer manner.

4.2 FPGA Acceleration

FPGA acceleration has been applied to KF through the
MAST acceleration functionality of our platform (Section
3.3). In our initial investigation into FPGA acceleration
we selected the preprocessing stage for acceleration.
This stage contains two computational kernels that: i)
scale the depth camera image from mm to meters, and
ii) apply a bilateral �lter to produce a �ltered scaled
image. In particular, a �lter is applied to the scaled

VM
No FPGA With FPGA

Speedup
Acceleration Acceleration

Maxine VM 2.20 0.05 43x

OpenJDK 0.66 0.03 22x

Table 3. Performance and speedup of KF's pre-processing
stage with and without FPGA acceleration (mean exe-
cution time, in seconds, over 78 frames).

image in order to reduce the e�ects of noise in depth
camera measurements.
In order to improve the execution time in Java, we

merged the two routines into a single routine reducing
the streaming of data to and from the FPGA device. The
o�oading to the FPGA is accomplished by using the
Java Native Interface (JNI) mechanism to interface with
our MAST module (Section 3.3). The JNI stub extracts
C-arrays of �oating point values from the Java environ-
ment that represent the current input raw depth image
from the camera, and the current output scaled �ltered
image. The JNI stub, in turn, converts the current raw
depth image into an array of short integers which is mem-
ory allocated (through malloc) on the �rst execution of
the JNI stub. The FPGA hardware environment is also
initialized during �rst execution, and consequently the
hardware performs the merged scaling and �ltering op-
eration. As a result, subsequent executions only need to
perform a call to extract C-arrays and to, �nally, release
the output scaled and �ltered image array back to the
Java environment. The computational kernels selected
for FPGA execution have been developed in Bluespec
System Verilog [3] and synthesized on the Xilinx Zynq
706 board.
As depicted in Table 3, FPGA acceleration of the

selected kernels improves their performance by 43x and
22x on MaxineVM and OpenJDK respectively. The dif-
ference in both execution times and speedups from both
VMs stem from the fact that OpenJDK produces more
optimal code than MaxineVM (Section 3.1). Unfortu-
nately, we could not combine both techniques to provide
an end-to-end evaluation having simultaneous acceler-
ation on FPGAs and GPGPUs because we could not
get access to a system with both GPGPU and FPGA
accelerators.

5 Related Work
Several related works proposed the exploitation of hetero-
geneous hardware from dynamic languages. The majority
of them target GPGPUs, although attempts have also
been for FPGAs, vector units, and multi-core proces-
sors. Amongst the targeted programming languages are
Java [2, 4, 12, 14, 16, 19, 23, 25, 31, 37, 38], Python
[5, 9, 24, 32], Haskell [11, 20, 26], Scala [10, 29], MAT-
LAB [5, 13], and JavaScript [21].
To the best of our knowledge, this paper describes

the most complex application to be written entirely in
7

VEE’17, Xi’an, China C. Kotselidis et al.

Java and accelerated by GPGPUs to date. Our OpenCL
accelerator di�ers from prior work by: 1) not using a
super-set of the Java language [4, 19], 2) not using ahead-
of-time compilation [14, 31], 3) not requiring developers
to write heterogeneous code in another language [23],
and 4) not requiring manual parallelization of kernels
[2].

6 Conclusions and Future Work
In this paper, we showcased that it is possible to use a
high-level language such as Java in order to implement
complex Computer Vision applications. We extended our
research to both industrial-strength and research Java
Virtual Machines along with desktop and embedded
systems. Also, we managed to accelerate the Kinect
Fusion application by up to 47x achieving over 30 FPS
with the use of GPGPUs and FPGAs.
Our next steps are to unify our OpenCL accelerator

and the MAST technology in order to transparently
o�oad on GPGPUs and FPGAs under the same exe-
cutions. Finally, recent hardware such as Intel's Xeon
and FPGA systems will enable us to unify both ac-
celeration domains to provide Java a high-performing
out-of-the-box acceleration suite.

Acknowledgments
This work is partially supported by EPSRC grants Anyscale
EP/L000725/1, PAMELA EP/K008730/1, DOME EP/J016330/1,
and EU Horizon 2020 ACTiCLOUD 732366 grant. Rod-
chenko is funded by a Microsoft Research PhD Scholar-
ship, and Luján is funded by a Royal Society University
Research Fellowship.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.

Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind,
S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T.
Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
2000. The JalapeñO Virtual Machine. IBM Systems Journal
(2000).

[2] AMD-Aparapi. 2017. http://developer.amd.com/tools-and-
sdks/heterogeneous-computing/aparapi/. (Feb. 2017).

[3] Arvind. 2003. Bluespec: A Language for Hardware Design,
Simulation, Synthesis and Veri�cation Invited Talk. In Pro-
ceedings of the First ACM and IEEE International Conference
on Formal Methods and Models for Co-Design (MEMOCODE
'03). IEEE Computer Society, Washington, DC, USA, 249�.
http://dl.acm.org/citation.cfm?id=823453.823860

[4] Joshua Auerbach, David F. Bacon, Perry Cheng, and Ro-
dric Rabbah. 2010. Lime: A Java-compatible and Synthe-
sizable Language for Heterogeneous Architectures. In Pro-
ceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA '10). ACM, New York, NY, USA, 89�108. DOI:
http://dx.doi.org/10.1145/1869459.1869469

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal
Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph

Turian, David Warde-Farley, and Yoshua Bengio. 2010.
Theano: a CPU and GPU Math Expression Compiler. In
Proceedings of the Python for Scienti�c Computing Confer-
ence (SciPy).

[6] P. J. Besl and H. D. McKay. 1992. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 14, 2 (Feb 1992), 239�256.

[7] S. M. Blackburn, R. Garner, C. Ho�man, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. 2006. The DaCapo
Benchmarks: Java Benchmarking Development and Analysis.
In OOPSLA '06: Proceedings of the 21st annual ACM SIG-
PLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications. ACM Press.

[8] J. Butzke, K. Daniilidis, A. Kushleyev, D. D. Lee, M.
Likhachev, C. Phillips, and M. Phillips. 2012. The University
of Pennsylvania MAGIC 2010 multi-robot unmanned vehicle
system. Journal of Field Robotics 29, 5 (2012), 745�761.

[9] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011.
Copperhead: Compiling an Embedded Data Parallel Lan-
guage. In Proceedings of the 16th ACM Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP '11).
ACM, New York, NY, USA, 47�56. DOI:http://dx.doi.org/10.
1145/1941553.1941562

[10] Olivier Cha�k. 2017. ScalaCL: Faster Scala: optimizing com-
piler plugin + GPU-based collections (OpenCL). (Feb. 2017).
Retrieved December 20, 2018 from http://code.google.com/p/
scalacl

[11] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee,
Trevor L. McDonell, and Vinod Grover. 2011. Accelerating
Haskell Array Codes with Multicore GPUs. In Proceedings
of the Sixth Workshop on Declarative Aspects of Multicore
Programming (DAMP '11). ACM, New York, NY, USA, 3�14.
DOI:http://dx.doi.org/10.1145/1926354.1926358

[12] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel
Luján. 2017. Boosting Java Performance using GPGPUs. In
Proceedings of the 30th International Conference on Archi-
tecture of Computing Systems (ARCS '17).

[13] Ronan Collobert, Koray Kavukcuoglu, and Clément Fara-
bet. 2011. Torch7: A Matlab-like Environment for Machine
Learning. In BigLearn, NIPS Workshop.

[14] Georg Dotzler, Ronald Veldema, and Michael Klemm. 2010.
JCudaMP. In Proceedings of the 3rd International Workshop
on Multicore Software Engineering. DOI:http://dx.doi.org/10.
1145/1808954.1808959

[15] EJML. 2017. (Feb. 2017). Retrieved December 20, 2018 from
http://ejml.org

[16] Juan José Fumero, Michel Steuwer, and Christophe Dubach.
2014. A Composable Array Function Interface for Heteroge-
neous Computing in Java. In Proceedings of ACM SIGPLAN
International Workshop on Libraries, Languages, and Compil-
ers for Array Programming (ARRAY'14). ACM, New York,
NY, USA, 44:44�44:49. DOI:http://dx.doi.org/10.1145/2627373.
2627381

[17] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison.
2014. A Benchmark for RGB-D Visual Odometry, 3D Recon-
struction and SLAM. In ICRA.

[18] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison.
2014. A Benchmark for RGB-D Visual Odometry, 3D Recon-
struction and SLAM. In IEEE Intl. Conf. on Robotics and
Automation, ICRA. Hong Kong, China.

[19] Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shi-
rako, and Vivek Sarkar. 2013. Accelerating Habanero-Java

8

http://dl.acm.org/citation.cfm?id=823453.823860
http://dx.doi.org/10.1145/1869459.1869469
http://dx.doi.org/10.1145/1941553.1941562
http://dx.doi.org/10.1145/1941553.1941562
http://code.google.com/p/scalacl
http://code.google.com/p/scalacl
http://dx.doi.org/10.1145/1926354.1926358
http://dx.doi.org/10.1145/1808954.1808959
http://dx.doi.org/10.1145/1808954.1808959
http://ejml.org
http://dx.doi.org/10.1145/2627373.2627381
http://dx.doi.org/10.1145/2627373.2627381

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

Programs with OpenCL Generation. In Proceedings of the
2013 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools. DOI:http://dx.doi.org/10.1145/2500828.2500840

[20] Sylvain Henry. 2013. ViperVM: A Runtime System for Par-
allel Functional High-performance Computing on Heteroge-
neous Architectures. In Proceedings of the 2Nd ACM SIG-
PLAN Workshop on Functional High-performance Comput-
ing (FHPC '13). ACM, New York, NY, USA, 3�12. DOI:
http://dx.doi.org/10.1145/2502323.2502329

[21] Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman,
and Jaswanth Sreeram. 2013. River Trail: A Path to Paral-
lelism in JavaScript. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications (OOP-
SLA '13). ACM, New York, NY, USA, 729�744. DOI:
http://dx.doi.org/10.1145/2509136.2509516

[22] JEP 243: Java-Level JVM Compiler Interface. 2017.
http://openjdk.java.net/jeps/243. (Feb. 2017).

[23] Java bindings for OpenCL. 2017. (Feb. 2017). Retrieved
December 20, 2018 from http://www.jocl.org/

[24] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catan-
zaro, Paul Ivanov, and Ahmed Fasih. 2012. PyCUDA and
PyOpenCL: A Scripting-based Approach to GPU Run-time
Code Generation. Parallel Comput. 38, 3 (March 2012),
157�174.

[25] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy
Nisbet, John Mawer, Will Toms, James Clarksonand Cos-
min Gorgovan, Amanieu d'Antras, Yaman Cakmakci, Thanos
Stratikopoulos, Sebatian Werner, Jim Garside, Javier Navari-
das, Antoniu Pop, John Goodacre, , and Mikel Luján. 2016.
Project Beehive: A Hardware/Software Co-designed Stack
for Runtime and Architectural Research. In Proceedings of
the 9th International Workshop on Programmability and
Architectures for Heterogeneous Multicores (MULTIPROG
'16).

[26] Geo�rey Mainland and Greg Morrisett. 2010. Nikola: Em-
bedding Compiled GPU Functions in Haskell. In Proceed-
ings of the Third ACM Haskell Symposium on Haskell
(Haskell '10). ACM, New York, NY, USA, 67�78. DOI:
http://dx.doi.org/10.1145/1863523.1863533

[27] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer,
Andy Nisbet, Paul H. J. Kelly, Andrew J. Davison, Mikel
Luján, Michael F. P. O'Boyle, Graham Riley, Nigel Topham,
and Steve Furber. 2015.. Introducing SLAMBench, a perfor-
mance and accuracy benchmarking methodology for SLAM.
In ICRA.

[28] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli,
Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011.
KinectFusion: Real-time Dense Surface Mapping and Track-
ing. In Proceedings of the 2011 10th IEEE International
Symposium on Mixed and Augmented Reality (ISMAR '11).
IEEE Computer Society, Washington, DC, USA, 127�136.
DOI:http://dx.doi.org/10.1109/ISMAR.2011.6092378

[29] Nathaniel Nystrom, Derek White, and Kishen Das. 2011.
Firepile: Run-time Compilation for GPUs in Scala. In Pro-
ceedings of the 10th ACM International Conference on Gen-
erative Programming and Component Engineering (GPCE
'11). ACM, New York, NY, USA, 107�116. DOI:http://dx.doi.
org/10.1145/2047862.2047883

[30] OpenJDK. 2017. http://openjdk.java.net/. (Feb. 2017).
[31] P.C. Pratt-Szeliga, J.W. Fawcett, and R.D. Welch. 2012.

Rootbeer: Seamlessly Using GPUs from Java. In Proceedings
of 14th International IEEE High Performance Computing

and Communication Conference on Embedded Software and
Systems. DOI:http://dx.doi.org/10.1109/HPCC.2012.57

[32] Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman, and
Dennis Shasha. 2012. Parakeet: A Just-in-time Parallel Ac-
celerator for Python. In Proceedings of the 4th USENIX Con-
ference on Hot Topics in Parallelism (HotPar'12). USENIX
Association, Berkeley, CA, USA, 14�14.

[33] SpecJVM2008. 2017. https://www.spec.org/jvm2008/. (Feb.
2017).

[34] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössen-
böck. 2014. Partial Escape Analysis and Scalar Replace-
ment for Java. In Proceedings of Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization
(CGO '14). ACM, New York, NY, USA, 165:165�165:174.
DOI:http://dx.doi.org/10.1145/2544137.2544157

[35] Tango. 2017. (Feb. 2017). Retrieved December 20, 2018 from
https://get.google.com/tango/

[36] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter,
Mick Jordan, Laurent Daynès, and Douglas Simon. 2013.
Maxine: An Approachable Virtual Machine for, and in, Java.
ACM Trans. Archit. Code Optim. (January 2013).

[37] Yonghong Yan, Max Grossman, and Vivek Sarkar. 2009.
JCUDA: A Programmer-Friendly Interface for Accelerating
Java Programs with CUDA. In Euro-Par 2009 Parallel Pro-
cessing, Henk Sips, Dick Epema, and Hai-Xiang Lin (Eds.),
Vol. 5704. Springer Berlin Heidelberg.

[38] Wojciech Zaremba, Yuan Lin, and Vinod Grover. 2012.
JaBEE: Framework for Object-oriented Java Bytecode Compi-
lation and Execution on Graphics Processor Units. In Proceed-
ings of the 5th Annual Workshop on General Purpose Process-
ing with Graphics Processing Units (GPGPU-5). ACM, New
York, NY, USA, 74�83. DOI:http://dx.doi.org/10.1145/2159430.
2159439

[39] Zhengyou Zhang. 1994. Iterative Point Matching for Regis-
tration of Free-form Curves and Surfaces. Int. J. Comput.
Vision 13, 2 (Oct. 1994), 119�152.

9

http://dx.doi.org/10.1145/2500828.2500840
http://dx.doi.org/10.1145/2502323.2502329
http://dx.doi.org/10.1145/2509136.2509516
http://www.jocl.org/
http://dx.doi.org/10.1145/1863523.1863533
http://dx.doi.org/10.1109/ISMAR.2011.6092378
http://dx.doi.org/10.1145/2047862.2047883
http://dx.doi.org/10.1145/2047862.2047883
http://openjdk.java.net/
http://dx.doi.org/10.1109/HPCC.2012.57
https://www.spec.org/jvm2008/
http://dx.doi.org/10.1145/2544137.2544157
https://get.google.com/tango/
http://dx.doi.org/10.1145/2159430.2159439
http://dx.doi.org/10.1145/2159430.2159439

	Abstract
	1 Introduction
	2 Kinect Fusion
	2.1 Processing Pipeline
	2.2 Tracking Algorithm
	2.3 Measuring Performance and Accuracy
	2.4 Portability Issues
	2.5 Java Implementation

	3 Heterogeneous Managed Runtime Systems
	3.1 Maxine Research Virtual Machine
	3.2 General Purpose OpenCL Acceleration
	3.3 Application Specific FPGA Acceleration

	4 Evaluation
	4.1 GPGPU Acceleration
	4.2 FPGA Acceleration

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

